Home & Community Food Scrap Composting Success

Athena Lee Bradley
Northeast Recycling Council
www.nerc.org

Funded in part by a USDA Rural Services Grant
This material is based upon work supported under a grant by the Utilities Programs, United States Department of Agriculture. Any opinions, findings, and conclusions or recommendations expressed in this material are solely the responsibility of the author and does not necessarily represent the official view of the Utilities Programs.
organics

Waste Rescue
Reduction
food Composting scraps
Food Waste

- 30-40% of food is wasted each year
- Equals about $1,600 each year per family
- ~13% of carbon pollution emissions are related to the growing, manufacturing, transporting, & disposal of food
Food Waste in Maryland

- Food waste & yard trimmings (organics) make up ~1/3 waste
- Only ~9.6% of food waste was composted in Maryland in 2014
- 9.4% of Cecil County residents are food insecure
Science of Composting
What is Compost?

Compost is a value-added product that converts residue material into:

- Easy-to-handle
- Humus-like product
- Rich in organic matter & organisms
Composting

- Controlled, aerobic biological process
 - Results in the decomposition of organics
- Decomposers: Micro & Macroorganisms
 - Digest organic residues for food & energy
 - Speed up the process by creating heat
Raw materials

- Organic matter - including carbon, chemical energy, protein and nitrogen
- Mineral nutrients - including nitrogen and other elements
- Water
- Microorganisms

Process

- Water
- Heat
- CO₂

Product

Finished compost containing organic matter - including carbon, chemical energy, nitrogen, protein, humus, mineral nutrients, water and microorganisms

Recycled Organics University
www.recycledorganics.com
Compost Bacteria

- **Mesophilic**
 - ✓ Active at lower temperatures

- **Thermophilic**
 - ✓ They’re hot! Active above 120° F
 - ✓ Necessary for more rapid composting
Healthy biological activity is essential to successful composting—setting up the right environment and conditions is fundamental to the process.
Composting Science Basics

- **Aeration**
 - ✓ Oxygen concentrations: 10-14+ %.

- **Carbon to Nitrogen (C:N) Ratio**
 - ✓ 20:1 – 60:1
 - ✓ Preferred 30:1-50:1

- **Moisture**: 40 to 65 percent
 - ✓ Like a damp sponge
Science, cont.

- **Optimum pH range**
 - ✓ 5.5 to 8

- **Temperature** – 90°-150°F (32°-66°C)
 - ✓ *Process to Further Reduce Pathogens*
 - ✓ 131°F for 3-15 days (f of system)
Basic Recipe

- 2-3 Parts Carbon - “Brown” materials
 - Woody, dry materials: wood shavings, leaves, soiled/shredded paper, straw, animal bedding

- 1 Part Nitrogen - “Green” materials
 - Fresh, “wet” materials: food scraps, grass clippings, garden trimmings (no weeds), manures

- Keep it small!
 - Mowing, grinding, chipping, or shredding

Does your site have enough of the right mix?
High Carbon 2-3 volumes

High Nitrogen 1 volume
Recipe, Cont.

- A little soil, finished compost, or horse manure
- Moisture
 - Just a little, like a damp sponge
 - Leave lid or cover off during rain
 - Required to keep microorganisms alive & active
<table>
<thead>
<tr>
<th>Carbon Sources</th>
<th>Carbon:Nitrogen Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yard wastes</td>
<td>50 - 90:1</td>
</tr>
<tr>
<td>Straw/hay</td>
<td>50 - 80:1</td>
</tr>
<tr>
<td>Wood chips/sawdust</td>
<td>250 - 500:1</td>
</tr>
<tr>
<td>Nitrogen Sources</td>
<td></td>
</tr>
<tr>
<td>Vegetable scraps</td>
<td>10 – 30:1</td>
</tr>
<tr>
<td>Fruit scraps</td>
<td>10 – 30:1</td>
</tr>
<tr>
<td>Grass & garden gleanings</td>
<td>10 – 20:1</td>
</tr>
<tr>
<td>Chicken manure</td>
<td>10 – 25:1</td>
</tr>
<tr>
<td>Cow manure</td>
<td>20 – 30:1</td>
</tr>
<tr>
<td>Horse manure</td>
<td>25 – 30:1</td>
</tr>
</tbody>
</table>

Recipe, cont.

- Containers or piles
- Cover

Minimum of 3 x 3 x 3
Recipe Tips for Tumblers

- Start with equal parts C to N or 2 parts C to 1 part N
- Adjust to speed decomposition
 - ✓ Temperature
 - ✓ Moisture level
 - ✓ Active decomposition
Recipe Tips for Bins/Piles

- Carbon – keep with the $30^+:1$ C:N
- Bulking agents – wood shavings, chips
 - Odor control – shavings
 - Chips/twigs on bottom
 - Provide porosity
 - Pile stabilization
 - Aid air flow
General TIPS

- Mix ingredients together to create a better balance—homogeneous mix
 - Adding food scraps
 - No more than 20%, more okay in tumblers/Jora
 - Balance C:N ratio, moisture, bulk density
 - Observation, temperature, look & feel of compost, trial & error
Aeration Techniques

- Tumblers: Close lid & rotate
- Piles, bins: Lift materials with pitch fork
 ✔ Move materials from outside to inside
 ✔ Or, place materials on perforated pipes or pipe through middle
Acceptable Materials

- Vegetable food scraps, peels
- Fruit food scraps, peels
- Nuts & nut shells
- Dairy, cheese, eggs/egg shells
- Coffee grounds/filters & tea bags
- Leaves, garden trimmings
- Napkins, paper towels
- Sawdust
- Livestock bedding/manure
- Straw
DO NOT COMPOST

- Meat/Bones/Grease
- Weeds
 - Tomatoes & squash may sprout “volunteers”
- Cat litter or dog manure

** Small amounts of meat & grease, e.g., in soups, casseroles, sauces should be fine.
COMPOST SYSTEMS & OPERATIONS

FOOD SCRAPS
Tumblers
Compost Bins
Aerobin & Jora
3-BIN SYSTEM

Image Cr.: George McDonald, Maine DEP
Windrows

Images Cr.: David Hurd, GrowNYC
In-Vessel

The Dirt Factory community composting facility in University City
Image Cr.: PlanPhily
Aerated Static Piles

Images Cr.: David Hurd, GrowNYC
Black Dirt Farm Devine Gardens

Vermicomposting

Image Cr.: Black Dirt Farm Image Cr.: Devine Gardens
Brattle
grow Compost

Windham Solid Waste Management District’s All Purpose Compost

Call to order 802-257-0272
Grow Compost Vermont
Onondaga County Resource Recovery Agency

Tipping fee: $34/ton vs. $84/ton MSW
Community Composting

- Often volunteer run; some operated by nonprofit organizations or farms
- Produces compost for local use
- Promotes community connections
- Provides an essential role in the evolution of food scrap diversion
- Range of sizes - 10 sq. ft. – 20,000 sq. ft.
Maryland Regulations

- Exempt
 - Any feedstocks
 - No more than 5,000 sq. ft. “in support of composting”
 - Maximum pile height restrictions
 - Feedstocks no higher than 9 ft.
 - All other piles no higher than 12 ft.
 - Operated so as to not be a nuisance
Costs & Inputs to Build System

Materials, Equipment, Supplies, Tools
Bins, Screener

- Purchased Bins, Tumblers
- Tools to assemble or build
- Wood
- Screws, bolts, nails, etc.
- Hardware cloth
- Screening material
Supplies

- Gloves
 - ✔ Rubber for handling food scraps
 - ✔ Gardening for turning
- Tarps
- Signage & fliers
- Scissors (cut bags)
- Water-proof box for logs
Equipment/Tools

- Chopping & Shredding
 - Trowels for tumblers
 - Hatchet
 - Garden edger or spade shovel
 - Pruners
 - Mulch mower
Equipment/Tools

- Turning & Material Moving Tools
 - Pitch fork
 - Shovel
 - Bobcat/tractor
- Thermometer
 - For hot composting
PROCESS & MANAGEMENT & MONITORING

Food2
Site

- Year-round accessibility
- Access to a water source is necessary
- Shrubbery, fencing, or cover to block wind
- Shady/partial sun is best
- Sit bins/piles on ground, grass or vegetated area
 - Tumblers can be mounted
Ludlow Community Compost Site

Jora/Tumbler

3-Bin System

Signage

Food scrap collection bins & carbon storage
Receiving/Mixing

- Feedstock Preparation
 - ✓ Size reduction: chop, shred
 - ✓ Mix: homogenous blend
- Blend proper C:N ratios
- Add moisture, if needed

Image Cr.: Dreamkeeper Garden
Mixing in the Tumblers
Mixing Food Scraps in Bins

Food Land Opportunity - Chicago

Nola Greens – New Orleans
Simple & “Slow” Method

- Follow the basic recipe
- Turn occasionally
- Compost ready in 12-18 months
Hot Compost

- Temperature should rise to at least 90-120° F
 - 130°F for PFRP
 - Turn/rotate materials to achieve heat
 ➢ 1-2 times per week, as needed
“Hot” or Active Composting

- Enclosed containers
 - Insulate in winter
 - Larger containers or tumblers
 - Cover piles – tarp or chips
- Proper C:N “mix” of feedstocks
- Add water, as necessary
Hot Compost, cont.

- Fill one tumbler or bin completely prior to moving to next
- More frequent turning of materials
 - ✓ 1-2 times per week
- Temperature should rise to 120° F
- Finished compost in 4-8 months
Ready for Curing

- Ingredients are digested & bacterial activity declines
- Compost pile heats up very little
 - Even after turning or aerating the pile
- Compost has a uniform, crumbly appearance, earthy smell
Curing

- Store in bin or pile
- Turn occasionally
- Keep moist

Image Cr.: Rodale
Chapel Hill Community Compost

Image Cr.: Chapel Hill Spring Garden Tour
Harvesting & Screening

- Remove finished compost from curing area
- Screen/sift
- Send sample for testing
- Cover until ready for use
- ✓ Signage – “finished compost”
Finished Compost - Screening

Image Cr.: University of Florida/IFAS Extension Sarasota County

Image Cr.: EcoCity Farms
Monitoring the Process

- **Observation**
 - ✓ Are the bins or piles steaming?
 - ✓ Are materials looking different?
 - ✓ Is decomposition occurring?
 - ✓ Materials looking like soil?
 - ✓ Is the pile uniformly composting?
Monitoring the Process, cont.

- **Compost feel**
 - ✔ Does the squeeze test indicate that there is moisture in the material
 - ✔ Does it feel like a damp sponge & stick together?
 - ✔ Is the material too wet.slimy?
Monitoring the Process, cont.

- **Oxygen**—Smell is the best measure of properly aerated composting
- Unpleasant odor – indicative of anaerobic conditions
 - ✓ Pile needs to be turned
Temperature monitoring

- Is the temperature rising appropriately for rapid compost?
- Does the temperature rise to 90°F
- Maintain for PFRP (131°F...ideal)
Tips

▪ Adequate amount of carbon
▪ **Always** cover food scraps with carbon & soil
 ➢ Sawdust is best
▪ Cover with lime if fruit flies & vermin (rodents, bears) an issue
Tips

- Line bottoms of bins with wire mesh
 - To detour vermin
- Use vinegar to wash collection containers
If Critters Become An Issue

- Use Jora, Tumblers for full decomposition
- Eliminate any meat, sauces, cheese
- Discontinue adding food scraps, especially in early spring
- Build an enclosure around the compost area
Bins within Fencing

Down to Earth Community Garden
Compost Testing

- Maturity
- At a minimum—analyze the basic nutrient content—nitrogen, phosphorous, & potassium (N:P:K:)
- Bioassay testing
BE ONE WITH YOUR COMPOST

Athena Lee Bradley
Northeast Recycling Council
athena@nerc.org
www.nerc.org