Development and Validation of a New Accelerated Test Method to Predict the Service Life of Corrugated HDPE Pipes Manufactured with Post-Consumer Recycled Materials

Outline

- Research objectives
- Overview of corrugated HDPE pipe and recycled materials
- Service life considerations of corrugated HDPE pipe containing recycled materials
 - Development of a new test method for pipes containing recycled materials
 - Service life prediction model
- · Results of research

本

小

本

Corrugated HDPE Pipe Overview

- Used for storm sewers, culverts and land drainage applications
- Highway standards have traditionally required product to be manufactured with 100% virgin materials
- Manufactured in 4 in. to 60 in. diameters and 20-ft lengths
- Attractive over competitive materials due to resistance to corrosion and abrasion and durability

Recycled Materials for Corrugated HDPE Pipe

- Post-industrial recycled (PIR) materials (pre-consumer)
 - UL Definition: "Material diverted from the waste stream during a manufacturing process that has never reached the end user."
 - May include reject parts, regrinds, defective parts, etc. from another manufacturer
- In-plant regrind materials
 - Scrap or out-of-spec parts
 - Scrap materials from start-up

Recycled Materials for Corrugated HDPE Pipe

Post-consumer recycled (PCR) PE materials

- PE materials from products that have served a previous consumer purpose
- Flake or reprocessed pellets
- More readily available than PIR materials and more consistent in performance, though may have lower stress crack resistance
- Approx. 5.5 billion pounds of these materials in agricultural and land drainage pipes over past 20 years!

25

Constant Stress Testing – A New Test Method – UCLS Test

Standard Test Method for The Un-notched, Constant Ligament Stress Crack Test (UCLS) for HDPE Materials Containing Post- Consumer Recycled HDPE¹

This standard is issued under the fixed designation F3181; the number immediately following the designation indicates the year original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. superscript epsilon (o) indicates an editorial change since the last revision or reappoval.

- Invented to assess the crack initiation phase as well as the crack growth phase
- Conducted in DI water at elevated temperatures

<u>____</u>

Model Validation

- The next step was to validate the service life prediction model on fullscale pipes in simulated extreme installation conditions
- Required producing pipe with blends of materials that were designed to fail within a year so that the model could be validated in a reasonable timeframe

Strain Analysis

Peak local strain at 20% deflection = 3.75%

Peak tensile strain in simulated field test on buried pipes = 3.5%

ull Scale Pipe Validation Testing in Accelerated						
Pipe	Description	PCR	Predicted Time to Cracking	Actual Time to First Cracking		
Pipe 1	30 in. M294 pipe	0%	> 2 yrs.	> 1 yr No cracks		
Pipe 2	30 in. F2648 pipe	49%	> 2 yrs.	> 1 yr No cracks		
Pipe 3	30 in. Custom pipe	98%	58 – 148 days	101 days		
Pipe 4	30 in. F2648 pipe	49%	1.4 – 3.1 yrs.	> 1 yr No cracks		
Pipe 5	30 in. M294 pipe	0%	> 2 yrs.	> 1 yr No cracks		
Pipe 6	30 in. Custom pipe	98%	71 – 220 days	185 days		
Pipe 7	30 in. Custom pipe	98%	73 – 172 days	185 days		
Pipe 8	30 in. F2648 pipe	54%	203 - 578 days	> 306 d - No cracks		
Pipe 9	30 in. F2648 pipe	59%	139 – 357 days	300 days		

Summary of M			
Property	Test Method	M 294 V	M 294 R
Cell Classification	ASTM D3350	435400C	435400C
NCLS	ASTM F2136	18 hours liner; 24 hours plaque	18 hours liner; 24 hours plaque
OIT	ASTM D3895	Not required	20 minutes
Elongation at Break	ASTM D638	Not required	150%
UCLS	ASTM F3181	Not required	34 hours*
Markings		"M 294 V" – every 10 feet	"M 294 R"; "Contains Recycled Resins" – every 10 feet

本

Determining Minimum UCLS

$$t_T = \frac{10^c}{SF_t}$$

where

$$C = \left[\frac{\log(SF_{\sigma} * \sigma_T) - \log(\sigma_{SVC})}{m}\right] + \log(t_{SVC})$$

 t_{τ} = time to failure @ test cond., hrs. m = slope of brittle curve SF_{σ} = Stress shift factor SF_t = Time shift factor t_{SVC} = service life, hrs. σ_{SVC} = design stress at service cond., psi σ_{T} = stress at UCLS test condition, psi

1

Adjust for 95% Confidence

$$LCL_{95\%} = t_T = \bar{X}_{95\%} - t_{(n-1)} \left(\frac{COV * \bar{X}_{95\%}}{\sqrt{n}} \right)$$

$$\bar{X}_{95\%} = rac{t_T}{\left[1 - \left(\frac{t_{(n-1)} * COV}{\sqrt{n}}\right)\right]}$$

 X_{g5} = Minimum UCLS test requirement t_{T} = time to failure @ test cond., hrs. t_{n-1} = t-statistic for 95% CI = 2.132 COV = Maximum coefficient of variation = 0.5 n = number of test specimens = 5

Summary and Conclusions The purpose of these research projects was to evaluate the viability of incorporating post-consumer recycled materials into corrugated HDPE pipes for highway drainage applications The research demonstrated that corrugated HDPE pipes manufactured with recycled materials can have a service life exceeding 100 years Revisions to AASHTO M 294 were adopted in 2018, and pipes containing recycled materials are currently being installed underneath highways in several states as a result A new test method for the UCLS test was published by ASTM A new AASHTO standard practice for determining service life of these pipes was balloted in October 2018 and will be published this year

